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An experimental study of two-dimensional
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Regular waves
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This paper describes an experimental study of two-dimensional surface water waves
propagating on a depth-varying current with a non-uniform vorticity distribution. The
investigation is divided into two parts. The first concerns the ‘equilibrium’ conditions
in which the oscillatory wave motion and the current co-exist. Measurements of
the water-surface elevation, the water-particle kinematics, and the near-bed pressure
fluctuations are compared to a number of wave and wave–current solutions including
a nonlinear model capable of incorporating the vertical structure of the current profile.
These comparisons confirm that the near-surface vorticity leads to an important
modification of the dispersion equation, and thus affects the nature of the wave-
induced orbital motion over the entire water depth. However, the inclusion of vorticity-
dependent terms within the dispersion equation is not sufficient to define the combined
wave–current flow. The present results suggest that vorticity may lead to a significant
change in the water-surface profile. If a current is positively sheared, dU/dz > 0,
with negative vorticity at the water surface, as would be the case in a wind-driven
current, a wave propagating in the same direction as the current will experience
increased crest–trough asymmetry due to the vorticity distribution. With higher and
sharper wave crests there is a corresponding increase in both the maximum water-
particle accelerations and the maximum horizontal water-particle velocities. These
results are consistent with previous theoretical calculations involving uniform vorticity
distributions (Simmen & Saffman 1985 and Teles da Silva & Peregrine 1988).

The second part of the study addresses the ‘gradually varying’ problem in which
there are changes in the current, the wavelength and the wave height due to the
initial interaction between the wave and the current. These data show that there is
a large and non-uniform change in the current profile that is dependent upon both
the steepness of the waves and the vorticity distribution. Furthermore, comparisons
between the measured wave height change and a number of solutions based on the
conservation of wave action, confirm that the vorticity distribution plays a dominant
role. In the absence of a conservation equation for wave action appropriate for
nonlinear waves on a depth-varying current, an alternative approach based on the
conservation of total energy flux, first proposed by Longuet-Higgins & Stewart (1960),
is shown to be in good agreement with the measured data.
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1. Introduction
Previous studies, well documented in the review articles by Peregrine (1976), Jonsson

(1990) and Thomas & Klopman (1997), have shown that the interaction between a
regular wave train and a steady co-flowing current is dependent upon the vertical
structure of the current profile. In the simplest case involving a current which is
uniform with depth (no vorticity), the wave–current interaction may be described
by a simple Doppler shift (Fenton 1985). Alternatively, if the current is linearly
sheared (constant vorticity) it is well known that the oscillatory wave motion remains
irrotational, and that the effects of the uniform vorticity first arise as a modification
to the dispersion relation. At higher orders of approximation, O(ε2) where ε = ak is
the wave steepness defined in terms of the wave amplitude a and the wavenumber k,
weakly nonlinear analytical solutions (Tsao 1959; Brink-Kjaer 1976; and Kishida &
Sobey 1988) show that the vorticity distribution produces changes in the water-surface
elevation. This important result was further investigated in numerical calculations
undertaken in deep water by Simmen & Saffman (1985) and in finite depth by Teles da
Silva & Peregrine (1988). These calculations confirm that with increased nonlinearity
the uniform vorticity has a profound effect upon the water-surface elevations.

Although there are many practical situations where these solutions are valid (i.e.
the majority of tidal flows are approximately uniform with depth), they are not
universally applicable. Indeed, if the current is generated by an external force acting
on the boundary of the flow (i.e. a wind stress) a highly sheared current with
non-uniform vorticity results. In this case the nonlinear wave–current interaction is
dependent upon the vorticity distribution, and the oscillatory wave motion becomes
rotational.

Several authors have considered the description of waves propagating on currents
that vary arbitrarily with depth. For example, Kirby & Chen (1989) adopted a
moderate current approximation (see Thomas & Klopman 1997) in which ε� δ � 1,
where δ is a measure of the current strength defined by δ = Ũ/c, where Ũ defines
a characteristic current velocity and c is the phase velocity of the waves. Within
this regime Kirby & Chen (1989) extended the deep water results of Stewart & Joy
(1974) and Skop (1987) to produce a dispersion relation valid to O(εδ2) for waves in
finite depth. Alternatively, Swan & James (2000) considered the weak current regime,
δ = O(ε)� 1 where the current velocity is assumed to be similar in magnitude to the
first-order orbital motion, and provide a stream function solution valid to O(εδ). This
solution, which is particularly suited to the description of currents exhibiting strong
near-surface shear, provides explicit descriptions for both the dispersion relation and
the water-particle kinematics. Although these solutions provide valuable guidance as
to the importance of the vorticity distribution, they are clearly limited to weakly
nonlinear effects.

In contrast, the nonlinear numerical models proposed by Dalrymple (1973, 1974,
1977), Thomas (1990), Chaplin (1990) and Cummins & Swan (1993) are not similarly
restricted. Although there are significant differences between these solutions, they
may be sub-divided into two broad categories. The first approach is based upon
the bi-linear model originally proposed by Dalrymple (1974). This divides the water
column into a number of discrete layers (originally two) and approximates the current
in each layer by a linear shear. This approach is not computationally intensive, and
has been used to investigate a number of realistic current profiles (Dalrymple &
Heidmann 1989). However, the vorticity distribution is (by definition) discontinuous,
and as a result a large number of layers is required to model a strongly sheared
current with non-uniform vorticity. The second approach, adopted by Thomas (1990)
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and Chaplin (1990), builds upon the procedure outlined by Dalrymple (1973, 1977).
These solutions are based upon the Dubreil–Jacotin transformation and involve the
development of a constrained minimization problem in which the dynamic free-
surface boundary condition is satisfied within a finite difference formulation. Using
this approach Dalrymple (1977) considered the interaction with both a linear shear
current and a current varying according to a 1/7th-power-law; while Thomas (1990)
provides good agreement with a number of experimental test cases involving weakly
sheared currents.

Although these solutions are well established, and have in some cases been used to
provide design information, there remains an acute shortage of comparative labora-
tory data. Previous experimental studies have clearly acknowledged the difficulty of
simultaneously generating a regular wave train and a two-dimensional steady current.
If, in addition, the desired current profile has a non-uniform vorticity distribution, the
problems become that much more difficult. Early studies, notably by Brevik (1980)
and Brevik & Aas (1980), considered waves on an essentially uniform current. The
effects of vorticity were, however, considered by Kemp & Simons (1982, 1983). In
a detailed experimental study of turbulent flows over both smooth and rough beds,
they considered the wave–current interaction in the near-bed region. Although these
measurements provide a valuable insight into the turbulence intensity and the re-
sulting bed stresses (with particular applications to the onset of sediment motion),
a local vorticity distribution in the near-bed region does not generally affect the
wave kinematics throughout the entire water column. In perhaps the most detailed
investigation of vorticity effects to date, Thomas (1981, 1990) compared his numerical
predictions with experimental measurements of both linear and nonlinear waves on a
number of current profiles having an arbitrary distribution of vorticity. These results
clearly establish the importance of vorticity in the wave–current interaction. However,
the current velocities measured in the vicinity of the water surface (or just beneath
the level of the wave trough) are at most weakly sheared. For example, the maximum
vorticity arising close to the water surface is of order ωs = 0.12 s−1. Nevertheless,
some important conclusions are drawn, which are discussed further in the context of
the present study.

Swan (1990) presents measurements of waves on a strongly sheared current in
which the vorticity distribution is approximately uniform with depth. In these cases
the existing irrotational wave solutions apply. However, although these waves were
not particularly steep (ε < 0.2), comparisons with a third-order analytical model (Tsao
1959 or Kishida & Sobey 1988) are poor. In contrast, the data are in good agreement
with numerical calculations provided by Chaplin (1990). These results imply that
a simple measure of the wave steepness (ε = ak) does not necessarily reflect the
nonlinearity of a combined wave–current flow. Skyner & Easson (1992, 1998) also
present a similar laboratory study. Although this includes some sophisticated full-field
velocity measurements, their analysis of this data is based upon a time-dependent
current, or one that varies with the phase of the wave cycle. This interpretation is
inconsistent with the existing wave–current models, and leads to confusion regarding
the segregation of the wave and the current components. This confusion, together
with the use of an inappropriate irrotational wave solution (that due to Chaplin
1980), accounts for their poor description of the velocity data at certain phases
of the wave cycle, notably in the vicinity of the wave trough. Klopman (1994)
also provides laboratory data describing near-linear waves on both ‘favourable’ and
‘adverse’ currents. In these cases the vorticity arising at the water surface is either small
or, in the case of the ‘adverse’ currents, shows little variation with depth. Nevertheless,
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some interesting data concerning the wave-induced change in the current profile are
provided. More recently, Groeneweg & Klopman (1998) have re-considered these data
and have shown that the current change can be successfully predicted using a GLM
formulation.

This paper presents the results of a new experimental study in which a series
of regular waves interact with a strongly sheared current exhibiting a non-uniform
vorticity distribution. These observations are appropriate to the interaction of swell
waves with a wind-driven current. They may also be relevant to the description
of waves at the mouth of an estuary where the intrusion of a saline wedge leads
to large vertical gradients in the out-flowing current. The purpose of the present
study is to investigate the influence of the vorticity distribution and to provide
benchmark data against which the existing wave–current formulations can be judged.
In particular, the data are compared to a five-layered numerical model based upon the
bi-linear formulation originally proposed by Dalrymple (1974). This model has been
investigated in a preliminary study (Cummins & Swan 1993) in which the five layers
of variable depth were shown to be sufficient to model a strongly sheared current with
a non-uniform vorticity distribution. Indeed, subsequent comparisons (not presented
here) have shown that the results of this model are identical to those produced by
the finite difference formulations proposed by Thomas (1990) and Chaplin (1990). A
brief description of this model is given in the Appendix.

Section 2 commences with a description of the experimental apparatus and mea-
suring procedure. A number of preliminary observations are also outlined. Discussion
of the measured wave–current interaction is sub-divided into two sections. The first,
presented in § 3, describes the equilibrium conditions arising within an established
wave–current combination. This concerns the interaction with both ‘favourable’ and
‘adverse’ currents, where the former corresponds to currents aligned with the direction
of wave propagation and the latter to currents opposing the wave motion. Measure-
ments of the water-surface elevation, the underlying kinematics, and the near-bed
pressure fluctuations are compared with the existing irrotational solutions and the
numerical model outlined in the Appendix. In contrast, § 4 concerns the initial interac-
tion between the wave and the current. This arises when a wave train first propagates
onto the current, and forms part of a ‘gradually varying’ problem in which there are
changes in the wave height, the wavelength and the current profile. These results are
compared to the conservation of total energy flux first proposed by Longuet-Higgins
& Stewart (1960) in their derivation of the radiation stress tensor. To further highlight
the importance of the vorticity distribution these results are also compared to the
fifth-order solution for waves on a uniform current (Thomas 1990), and the second-
order solution for waves on a linear shear current (Jonsson, Brink-Kjaer & Thomas
1978). The practical implications of these results are discussed in § 5.

2. Experimental work
2.1. Apparatus

The experimental investigation was undertaken in a purpose-built wave–current flume
that has been constructed in the Department of Civil & Environmental Engineering
at Imperial College. This facility is 20 m long, 0.3 m wide and has a maximum working
depth of 0.7 m. The sidewalls (and two sections of the bed) are constructed from glass
to provide full optical access. Smooth bed conditions are maintained throughout. The
waves are generated by a flat-backed, bottom-hinged paddle located at one end of the
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Figure 1. Side view of the experimental apparatus.

wave flume. The hydrostatic loads acting on the paddle are supported mechanically,
via a system of springs and pulleys, and the drive system controlled numerically. This
allows the successful generation of waves within a period range 0.5 s 6 T 6 2.0 s. At
the downstream end of the flume the wave motion is absorbed by a large block of
polyether foam. This is approximately 1.5 m in length where the front face has been
cut to form a vertical wedge with an included angle of 30◦. Using this method of
passive absorption the largest reflection coefficient measured within the wave flume
was less than 1%. Further details concerning the generation and absorption of waves
within this facility are given by Baldock, Swan & Taylor (1996). The re-circulating
current was introduced via three loops of 75 mm diameter pipework. Each loop is
driven by a self-priming centrifugal pump, and the flow direction determined by
four gate valves. This arrangement gives a variable discharge, with a total capacity
of 0.045 m3 s−1. This is sufficient to generate a uniform current of approximately
0.2 m s−1, or a strongly sheared current where the near-surface velocity may be as
large as 0.6 m s−1. A sketch showing the layout of the experimental facility is given
on figure 1.

The wave–current flume is equipped with an array of surface-piercing wave gauges.
Each gauge consists of two vertical wires (1 mm in diameter) that are supported within
a vertical traverse. This, in turn, is mounted on a movable carriage located on rails at
the top of the wave flume. The wave gauges can thus be positioned on any vertical
section, and allow the water-surface elevation to be measured with an accuracy of
±0.5 mm. The underlying velocity field was measured using laser-Doppler anemom-
etry. A 35 mW helium–neon laser was used to create a three-beam arrangement with
cross-polarization. This system allows the horizontal and vertical velocity components
to be measured simultaneously within a measuring volume estimated to be 0.5 mm3.
The laser beams were focused mid-way across the width of the wave flume and
were positioned via a traverse mechanism that was estimated to have an accuracy of
±1 mm in the vertical direction and ±2 mm in the horizontal. The intersection of the
laser beams was observed in a ‘forward scatter’ configuration using a photo-multiplier
(camera) located on the opposite side of the wave flume. This approach provides the
optimal signal-to-noise ratio with no disturbance of the flow field. To further improve
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the signal quality the water was seeded with milk added in the ratio of approxi-
mately 10 p.p.m. After filtering to remove some high-frequency contamination, it was
estimated that the velocity components could be determined to ±2%. Finally, the
pressure measurements discussed in § 3 correspond to the output from a transducer
mounted flush with the bed of the wave flume. This instrument provides a continuous
record of the pressure fluctuations, and has an accuracy of ±4%.

2.2. Inlet conditions and measuring procedure

The simultaneous generation of waves and depth-varying currents is complicated by
the need to have some form of current-shaping apparatus (to produce the required
velocity gradient), while at the same time allowing a mechanically generated wave
train to propagate with minimal disturbance along the length of the wave flume. In the
present study, two separate approaches were adopted to produce a range of sheared
current profiles. In the first case, a positively sheared ‘favourable’ current (U > 0
and dU/dz > 0, where U defines the current and (x, z) are Cartesian coordinates in
which x is measured in the direction of wave propagation and z is measured vertically
upwards from the bed) was produced by an up-welling flow positioned close to the
wave paddle. To achieve this the outlet pipes at the upstream end of the wave flume
were positioned close to the bed, and surrounded by a thick layer of polyether foam
(figure 2a). This arrangement produced large near-surface flows (figure 4a) that could
be straightened (across the width of the wave flume) and smoothed with additional
layers of foam and honeycomb placed approximately 1 m downstream (figure 2a).
This arrangement was adjusted (by trial and error) until a compromise was achieved
in which both the required current profile and a series of regular waves could be
generated at the measuring section. To ensure that the current-generating apparatus
did not unduly affect the wave train, preliminary measurements were taken in which
the pumps were switched off but the apparatus indicated on figure 2(a) remained in
place. In these cases both the water-surface elevation and the underlying kinematics
were in good agreement (±3%) with a fifth-order Stokes solution (Sobey et al. 1987).

Unfortunately, the simultaneous generation of a negatively sheared ‘adverse’ current
(U < 0, dU/dz < 0) and a regular wave train proved more difficult. In this case the
need to position the current-shaping apparatus between the passive absorber and
the measuring section (figure 2b) produced significant wave reflections capable of
disturbing the flow at the measuring section. Although the introduction of an up-
welling flow, as described above, was initially employed a second approach proved
more successful. In this case the outlet pipes (now at the downstream end of the wave
flume) were connected to a two-dimensional nozzle that directed the flow through
a horizontal slot located 10–15 cm beneath the level of the wave trough (figure 2b).
With this arrangement only a small quantity of foam (figure 2b) was necessary to
produce the required current profile. More importantly, this approach produced a
stronger current shear thereby allowing the measuring section to be moved further
upstream of the current-shaping apparatus.

In the present tests the measuring section was located 3.5 m upstream of the nozzle.
At this position it was possible to generate the required test conditions for the duration
of 5–6 wave cycles. During this period the regular waves co-exist with the desired
current profile, and the relevant experimental data are gathered before the incident
wave train is disrupted by the reflected waves travelling in the opposite direction.
Figure 3(a) shows a typical time-history of the water-surface elevation, η(t), recorded
at the measuring section. For t < 19 s the wave conditions are evolving towards a
uniform, or near-uniform, state. This is achieved within the interval 19 s 6 t 6 25 s
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Figure 2. Inlet conditions: (a) generation of waves on a ‘favourable’ shear current; (b) generation
of waves on an ‘adverse’ shear current.

during which the ‘representative’ data are recorded. For t > 25 s the disturbance caused
by the return of waves reflected from the downstream nozzle (figure 2b) becomes clear.
The waves recorded within the sample space are reproduced at larger scale in figure
3(b). Within each of the ‘adverse’ current cases discussed below the largest variation in
the wave height within the sample space was found to be ±2.1%. A similar variation
(±2.4%) was recorded in the ‘favourable’ current cases. Furthermore, measurements
of both the water-surface elevation and the underlying kinematics confirm that if the
re-circulating current is switched off, but the current-shaping apparatus remains in
place, the data collected during this sample period were again in good agreement
(±3%) with a fifth-order Stokes solution (Sobey et al. 1987).

In each of the tests cases considered in § 3 the current profiles were weakly turbulent.
For example, in a strongly sheared ‘favourable’ current (test case 5 on table 1) the
maximum root-mean-square velocity fluctuations, RMS[u′], were less than 7% of the
mean current; whilst in a typical ‘adverse’ current (test case 15 on table 1) this value
reduces to 5%. To confidently apply a laminar flow model the turbulence effects must
be overcome by averaging over an appropriately large number of wave cycles. In the
‘adverse’ current cases six wave cycles is clearly insufficient. To overcome this difficulty
multiple runs of each test case were undertaken to ensure that the ensemble-averaged
data were based on a minimum of 20 wave cycles. A similar number of wave cycles
was also considered in the ‘favourable’ current cases.

2.3. Preliminary observations

It has already been noted that in the absence of a mean flow, but with the current-
shaping apparatus indicated on figures 2(a) and 2(b) present, the wave motion is
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Period Height Steepness velocity vorticity velocity
Run T (s) H (m) 1

2
Hk Us (m s−1) ωs (s−1) Ũ (m s−1) Comments

1 0.75 0.100 0.33 — — — No current, inlet fig. 2(a)
2 1.00 0.075 0.15 — — — No current, inlet fig. 2(b)

3 0.75 0.083 0.22 +0.175 0 +0.171 Uniform, favourable
4 1.00 0.090 0.23 −0.190 0 −0.185 Uniform, adverse

5 0.75 0.079 0.19 +0.420 −2.09 +0.088 Favourable, constant current
6 0.90 0.083 0.15 +0.470 −1.90 +0.092 Favourable, constant current
7 1.05 0.100 0.14 +0.514 −2.21 +0.085 Favourable, constant current
8 1.20 0.106 0.13 +0.540 −2.20 +0.082 Favourable, constant current

9 1.00 0.090 0.24 −0.250 +0.58 −0.168 Adverse, constant wave
10 1.00 0.104 0.31 −0.348 +0.89 −0.153 Adverse, constant wave
11 1.00 0.111 0.34 −0.368 +1.20 −0.163 Adverse, constant wave
12 1.00 0.111 0.43 −0.540 +2.21 −0.173 Adverse, constant wave

13 0.90 0.086 0.33 −0.302 +0.87 −0.160 Adverse, constant current
14 1.00 0.094 0.28 −0.300 +0.71 −0.163 Adverse, constant current
15 1.10 0.096 0.23 −0.302 +1.03 −0.162 Adverse, constant current

Table 1. Equilibrium wave–current test conditions. (All test cases were undertaken in a water depth of d = 0.7 m.)
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in good agreement with existing irrotational solutions. Further preliminary measure-
ments sought to define the characteristics of the current profile. Figure 4(a) concerns
the variation in a current profile with time at one vertical section, while figure 4(b)
concerns the variation across the width of the wave flume. These results, which are
typical of each current profile, suggest the mean velocity is both steady and two-
dimensional. Unfortunately, the uniformity of the current profile along the length of
the wave flume is more difficult to maintain since both the turbulent shear stresses,
−ρu′v′, and to a lesser extent the viscosity of the fluid, will act to reduce the magnitude
of the current shear. Figure 4(c) shows the current profile measured at four vertical
sections along the length of the wave flume (x = 0, 1.4, 2.8 and 4.2 m), where x = 0 is
located approximately 1.5 m downstream of the honeycomb indicated on figure 2(a).
Although the downstream changes in the current profile are not insignificant, the
gradient in the z-direction is approximately two orders of magnitude larger than that
occurring in the x-direction. For example, in the ‘favourable’ current cases the largest
horizontal gradient was found to be ∂U/∂x = −0.04 s−1, whilst the corresponding
vertical gradient was ∂U/∂z = −2.20 s−1. Similar values were also recorded in the
‘adverse’ current cases with maximum values of ∂U/∂x = 0.03 s−1 and corresponding
values of ∂U/∂z = 2.21 s−1. These values correspond to current profiles measured
in the presence of waves. In the absence of waves the dominance of the vertical
shear is further increased. As a result, the authors believe that a quasi-steady wave–
current combination can be achieved, in which the characteristics of the wave–current
interaction are primarily dependent upon the vertical shear in the current profile.

Other preliminary measurements concerned the start-up characteristics of the wave
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flume. To limit the formation of longitudinal seiching, associated with the onset of
either current or wave generation, two additional precautions were adopted. First,
when the re-circulating current was initially switched on the tank was allowed to
settle for a period of at least 60 min. Secondly, the initial motion of the wave paddle
was increased linearly from rest over a period of 2 s. This latter precaution allows
the rapid generation of a regular wave train, necessary for the measuring procedure
outlined above, but prevents any sudden movements of the wave paddle. Repeated
measurements suggest that after applying these procedures the maximum amplitude
of any longitudinal seiching was always less than 0.5 mm. Finally, the generation of
a strongly sheared near-surface current often led to the formation of surface ripples.
This disturbance was particularly apparent during the generation of positively sheared
‘favourable’ currents, since in these cases neither the honeycomb nor the foam was
located at the water surface (figure 2a). However, with teepol added in the ratio of
approximately 10 p.p.m. the maximum ripple height was reduced to less than 3% of
the mechanically generated wave height.

3. Equilibrium conditions
3.1. Interpretation of data

The interpretation of velocity data gathered in a combined wave–current environment
is complicated by the definition of the current profile. In a fundamental sense Thomas
& Klopman (1997) define a current as that part of the mean flow which does not
depend upon the presence of the wave field for its existence. In a laboratory study
the laser-Doppler anemometer, described previously, provides a time-history of the
velocity at one point fixed in space. The simplest and most common approach is
thus to define the mean velocity by time-averaging the Eulerian velocity data over a
large number of complete wave periods. There are two difficulties associated with this
approach. First, the mean velocity will include an element of the flow associated with
the waves and does not therefore strictly correspond to the current velocity. Secondly,
and more importantly, the intermittence of the velocity data above the level of the
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wave trough (i.e. within the trough to crest region) precludes the determination of a
meaningful mean velocity. As a result, even if the first difficulty is neglected, neither
the surface current nor the near-surface vorticity distribution can be assessed using
this approach. Alternatively, the laboratory data may be interpreted within a steady
frame of reference in which the wave is brought to rest. Within this steady frame the
mean velocity may be calculated along an empirically determined streamline rather
than at one point fixed in space. This approach, which has been widely applied in
the study of air flows over a curved boundary (Hsu, Hsu & Street 1981), removes
the difficulty of defining the current profile and thus the vorticity distribution in the
vicinity of the water surface.

Although the benefits of this latter approach are significant, it also introduces
some uncertainty because the calculation of an average velocity along an empirically
determined streamline provides a Lagrangian description of the mean flow. As a
result, the calculated average will incorporate the wave-induced Stokes drift. Since
this component of the mean flow arises as a consequence of the wave motion, it
should not be considered as part of the current that interacts with the wave motion.
At a second order of wave steepness, the additional Lagrangian drift in irrotational
waves (in the absence of a current) is defined by

ŪStokes =
a2kσ cosh(2kz)

2 sinh2(kd)
, (1)

where a is the wave amplitude, k the wavenumber, σ the wave frequency, d the
water depth and z is measured vertically upwards from the bed. At this point it is
perhaps important to note that no attempt has been made to introduce the additional
Eulerian back-flow necessary to ensure that the net wave-induced mass flux across
any vertical section is zero. As a result, the present calculations are based upon Stokes
first definition of the phase velocity in which the wave motion, at any fixed point
always below the water surface, has a zero Eulerian average. Further consideration
of this point is given in § 3.2. More importantly, higher-order irrotational calculations
(Swan & Sleath 1990) confirm that (1) provides a reasonable description of the
wave-induced drift in the absence of a current. Nevertheless, it is only accurate to
a second order of wave steepness, O(ε2), and does not incorporate the effect of the
viscous boundary layers occurring at either the free surface or the bed. In this latter
respect, the so-called ‘conduction solution’ proposed by Longuet-Higgins (1953) may
be applicable. However, this solution requires the development of a fully diffused
vorticity profile. Given the magnitude of the turbulent fluctuations, discussed below,
this would take many wave cycles to evolve (see also Swan 1990) and is therefore
inappropriate.

More significantly, Dingemans (1997) provides a useful expression for the wave-
induced drift that takes account of the orbital fluid motion, the displacement of
the fluid particles, and the vertical structure of the mean flow. This solution is
appropriate to the description of rotational waves on currents with depth-varying
vorticity. However, for the wave–current combinations considered in the present
study, calculations based on this approach show only small variations (±5%) from
those predicted by (1). Indeed, repeated calculations confirm that the uncertainty in
the wave-induced drift is very small in comparison with the magnitude of the shear
current. As a result, the current velocity is determined by averaging the measured
velocity over one wavelength along an empirically determined streamline (specified in
a steady frame of reference), and subtracting the second-order Stokes drift defined in
(1). Having undertaken this procedure the data are returned to a stationary reference
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Figure 5. Interactions with a ‘favourable’ uniform current, case 3. (a) Current profile: �, initial
current; N, current measured in presence of waves. (b) Wave kinematics: �, horizontal velocity
measured beneath wave crest; −−−, waves-only solution, U = 0; - - - - - - -, Doppler-shifted solution,
U = Us.

frame by adding the measured phase velocity. Using this approach it is estimated
that the maximum error in the current profile determined in the presence of waves is
small (±5%). Nevertheless, this potential error is further considered with regard to
the change in the current profile discussed below. More importantly, this approach
provides the most effective method of defining both the current velocity and the
vorticity distribution close to the water surface.

3.2. Waves on a uniform current

The test conditions investigated in the present study are outlined in table 1. In each
case the data describe the wave conditions and the current profile in the combined
wave–current flow. In terms of the current profile the data describe the surface velocity
Us, and the surface vorticity, ωs, where the subscript s refers to conditions at the
water surface (z = η + d). In addition, the depth-averaged current, Ū, is also defined
for each test case.

Cases 1 and 2 correspond to the preliminary (waves-only) measurements discussed
in § 2, whereas cases 3 and 4 respectively concern the interaction with a ‘favourable’
uniform current (U > 0) and an ‘adverse’ uniform current (U < 0). In these latter cases
the current has no significant vorticity distribution (dU/dz ' 0), and consequently
the measured data are in good agreement with a simple Doppler-shifted solution.
For example, figure 5(a) concerns case 3, and presents two current profiles. The
first, indicated by the square symbols, shows the current profile measured in the
absence of waves; while the second, indicated by the triangular symbols, represents
the current measured in the presence of waves using the method outlined above.
In this latter calculation the data define the current profile directly beneath a wave
crest. At this phase of the wave cycle the empirically determined streamlines, along
which the measured data were averaged, are displaced upwards giving rise to data
located above the mean water level. In effect, the vertical axis of figure 5(a) defines the
absolute position of the streamlines beneath a wave crest. This approach is adopted
in all subsequent descriptions of the current profile.

The data presented on figure 5(a) suggest that in case 3 the only change in the
current profile corresponds to the addition of a small back-flow having a depth-
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Figure 6. Interactions with a strongly sheared ‘favourable’ current, case 5. (a) Current profile:
�, initial current; N, current measured in presence of waves. (b) Wave kinematics: �, horizontal
velocity measured beneath wave crest; −−−, waves-only solution, U = 0; - - - - - - -, Doppler-shifted
solution, U = Us; ———, multi-layered numerical model, U = U(z).

averaged value of ∆U = −11.2 mm s−1. Assuming that the presence of the waves does
not affect the discharge of the pumps (this was subsequently confirmed by measuring
the velocity profile across an outlet pipe), it seems likely that this back-flow is
established in order to compensate for the Stokes drift defined in (1). Indeed, if it is
assumed that this return-flow occurs uniformly with depth, a current change of ∆U =
− 1

2
a2σ coth(kd)/d is predicted. In case 3 this corresponds to ∆U = −10.3 mm s−1,

which is very close to the measured value given above. This result is typical of the
interaction with both ‘favourable’ and ‘adverse’ uniform currents (cases 3 and 4), but
is in marked contrast to the interaction with sheared currents (cases 5–15) discussed
below.

Figure 5(b) again concerns case 3 and compares the horizontal component of
the wave-induced orbital velocity, u(z), measured beneath a wave crest, with both
a fifth-order Stokes solution and the fifth-order Doppler-shifted solution proposed
by Fenton (1985). In this, and many subsequent comparisons, the Stokes solution
neglects the current and provides a waves-only solution, while the Doppler-shifted
solution assumes the current is constant with depth and defined by U = Us, where
Us is the current velocity at the water surface. In both case 3 (figure 5b) and case
4, the Doppler-shifted solution provides a good description of the measured data. If
the numerical model outlined in the Appendix is applied to these cases the predicted
kinematics are identical to the Doppler-shifted solutions.

3.3. Waves on a sheared current

3.3.1. Changes in the current profile

A similar sequence of results concerning the interactions with a positively sheared
(dU/dz > 0) ‘favourable’ current (U > 0) is presented on figures 6, 7 and 8. These
correspond to cases 5, 6 and 7 outlined in table 1, and consider the interaction of three
distinct wave trains (T = 0.75, 0.90 and 1.05 s) with the same undisturbed current
profile. In contrast, figures 9, 10 and 11 concern cases 10, 11 and 15 (table 1), in which
the current is ‘adverse’ (U < 0) and negatively sheared (dU/dz < 0), although the
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Figure 7. As figure 6 but for case 6.
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Figure 8. As figure 6 but for case 7.

magnitude of the vorticity arising at the water surface is less than that observed in
the ‘favourable’ current examples, cases 5–7. Unlike the previous uniform current case
(figure 5a) the data presented on figures 6(a), 7(a), 8(a) and 9(a), 10(a), 11(a), suggest
that the wave–current interaction produces a significant and non-uniform change in
the current profile. In each of these cases, and indeed all the cases indicated in table
1, there is clear evidence of a small additional back-flow in the lower half of the flow
field. This is similar in magnitude to that observed in figure 5(a) and again represents
the return-flow necessary to balance the Stokes drift. However, a much larger change
in the current is observed close to the water surface, where both the amplitude of the
wave-induced orbital motion and the shear in the current profile are a maximum.

In the ‘favourable’ current cases, figures 6(a), 7(a) and 8(a), the wave motion
produces a reduction in the magnitude of both the near-surface current and the
vorticity distribution. At first sight these results perhaps suggest that the current
change may be explained by additional wave-induced mixing. Indeed, previous studies
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Figure 9. Interactions with a strongly sheared ‘adverse’ current, case 10. (a) Current profile: �,
initial current; N, current measured in presence of waves. (b) Wave kinematics: �, horizontal
velocity measured beneath wave crest; −−−, waves-only solution, U = 0; - - - - - - -, Doppler-shifted
solution, U = Us; ———, multi-layered numerical model, U = U(z).
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Figure 10. As figure 9 but for case 11.

concerning the dilution of a jet discharged in waves (Koole & Swan 1994) have shown
that this effect can be significant. However, in the ‘adverse’ cases the current change
is markedly different. In cases 10, 11 and 15 on figures 9(a), 10(a) and 11(a) there is
little or no change in the magnitude of the surface current and some evidence that the
near-surface vorticity actually increases. Indeed, in several other cases the interaction
with the wave motion leads to significant increases in both the magnitude of the near-
surface velocity and the vorticity. Figure 12(a) (corresponding to case 12) provides
the best example of this effect. To highlight the contrast between the ‘favourable’
(U > 0) and the ‘adverse’ (U < 0) current cases, data describing the current changes
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Figure 11. As figure 9 but for case 15.

recorded in case 5 are also presented. These comparisons clearly suggest that the
current change cannot be explained by a simple increase in the vertical mixing.

The nature of the current change observed in the present tests is in broad agreement
with the laboratory results presented by Klopman (1994), although the magnitude
is considerably larger since the current is more strongly sheared. The effect of the
current shear (dU/dz) is examined in figure 12(b). This concerns cases 9–12, which
involve an identical wave train (T = 1.0 s) interacting with four different current
profiles. In these cases the magnitude of the surface current change, ∆Us, is shown
to be dependent upon the near-surface vorticity, ωs. However, other test cases also
suggest that ∆Us is strongly dependent upon the steepness of the incident waves, ak,
where both a and k are determined from the measured data. For example, figure
12(c) concerns cases 5–8 involving four wave trains, of differing steepness, interacting
with the same undisturbed current. These data show that ∆Us is dependent upon the
steepness of the incident wave train rather than the amplitude of the orbital motion.
For example, case 5 corresponds to the steepest incident wave train (ε = 0.28) and
produces the largest current change (∆Us = −0.16 m s−1), despite the fact that it has
the smallest wave height and therefore also the smallest particle orbits.

In other respects the amplitude of the wave-induced orbital motion is clearly
significant. Contrasting cases 5 and 7 on figures 6(a) and 8(a), confirms that the
vertical extent of the current change is strongly wave dependent. Case 5 is effectively
a high-frequency wave in which the amplitude of the orbital motion decays rapidly
with depth, while case 7 represents a longer wave with reduced depth decay. Although
both wave cases generate maximum horizontal velocities of u ' 0.4 m s−1 at the water
surface, 0.3 m below the still water level (z = 0.4 m) the velocity generated by wave
case 5 is less than half that associated with wave case 7. As a result, the modification
of the current profile observed in case 7 extends to almost twice the depth of that
recorded in case 5. The significance of this current change, ∆U(z), in terms of the
initial wave–current interaction is considered in § 4.

3.3.2. Wave kinematics

Figures 6(b), 7(b), 8(b) and 9(b), 10(b), 11(b), again concern the ‘favourable’ cases
5, 6, 7 and the ‘adverse’ cases 10, 11, 15. In each of these examples measured data
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Figure 12. Changes in the current profile. (a) U(z), cases 5 and 12: �, initial current; N, current
measured in presence of waves. (b) Current change, ∆Us, vs. surface vorticity, ωs. (c) Current change,
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describing the horizontal component of the wave-induced velocity, u(z), in phase
with the wave crest is compared with three possible solutions. The first represents a
fifth order waves-only solution (Sobey et al. 1987) which neglects the effects of the
current profile, i.e. U = 0. The second provides a Doppler-shifted solution (Fenton
1985) based upon the current velocity arising at the water surface, i.e. U = Us. This
solution correctly models the Doppler shift, to a fifth order of approximation, but
neglects the vorticity distribution associated with the vertical structure of the current.
In contrast, the third solution defines the results of the numerical model outlined
in the Appendix, and thus incorporates the magnitude of the surface current, Us,
and its vertical structure, U(z). In each case the measured data are shown to be in
good agreement with the numerical model throughout the water depth. However, to
achieve this level of agreement the wave–current interaction must be based on the
current profile measured in the presence of the waves.

The laboratory data presented in figures 6(b), 7(b) and 8(b) also confirm that
although the ‘favourable’ current profiles are such that significant current velocities
only occur in the upper fluid layers (z > 0.4), the wave–current interaction alters
the oscillatory motion over the entire water depth. This arises because the dispersion
equation (relating the wavenumber, the wave frequency and the water depth) depends
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strongly on the nonlinear boundary conditions evaluated at the free surface, z = η+d.
Thus the wavenumber, which essentially determines the decay of the oscillatory motion
with depth, has a strong dependence on the near-surface values of the current and the
vorticity. Considering first the oscillatory motion in the lower half of the flow field
(z < 0.35), the measured data are in good agreement with the numerical model, and lie
between the waves-only and the Doppler-shifted solution. Given that the wave–current
interaction within this regime is dominated by the modification of the dispersion
equation, the present results are qualitatively consistent with recent analytical work
in which the effect of the vorticity distribution was shown to counteract the Doppler
shift based on the surface current. Swan & James (2000) give the modified dispersion
equation appropriate to waves on a strongly sheared current as

c =
[g
k

tanh kd
]1/2

+Us − U ′s
2k

tanh kd+
U ′′s
4k2
− U ′′′s

8k3
tanh kd− Q

2
sech2kd, (2)

where the prime denotes a vertical derivative evaluated at the water surface, and Q is
a constant for a given wave–current interaction.

Equation (2) arises from a weakly nonlinear model in which the current is assumed
weak (δ = O(ε) � 1) and the perturbation is expanded to O(εδ). Given this approx-
imation, the first three terms on the right-hand side of (2) are consistent with the
findings of Tsao (1959) and Kishida & Sobey (1988). However, care must be exercised
in making comparisons of this type since the latter two solutions, involving uniform
vorticity, make no prior assumptions concerning the magnitude of the current. Ac-
cordingly, the O(ε2) solution proposed by Tsao (1959) will not be consistent with the
O(εδ) solution given in (2). Swan & James (2000) confirm that within the weak current
regime (2) is identical to the O(εδ) solution proposed by Kirby & Chen (1989), and
that for the present test cases the O(εδ2) correction is small. This latter conclusion
is, however, only applicable within the weak current regime. For the purpose of the
present investigation it may be noted that if the current shear at the water surface,
U ′s, is of the same sign as the surface velocity, Us, the associated vorticity acts to
reduce the Doppler shift and thereby limits the change in the wavenumber.

At higher elevations within the flow field the nature of the wave–current interaction
is undoubtedly more complicated. Figures 6(b), 7(b), 8(b) and 9(b), 10(b), 11(b), again
confirm that the measured data are in good agreement with the numerical model.
However, this agreement provides little by way of physical explanation. In contrast,
the uniform-vorticity solution (Tsao 1959) provides clear evidence of the development
of additional irrotational velocity components due to the interaction with the current;
whilst Swan & James (2000) identify rotational wave components of O(εδ) which
increase towards the water surface. Although valid comparisons between this latter
model and the present laboratory data are difficult, due to the model’s limited
nonlinearity, there is strong evidence to suggest that significant additional wave
components (both irrotational and rotational) arise within the data and that they
are modelled well by the numerical solution outlined in the Appendix. Indeed, the
best evidence to this effect is seen in figure 8(b). This corresponds to the steepest
current profile (measured in the presence of waves) and shows that the oscillatory
near-surface velocities are significantly larger than those predicted by an irrotational
waves-only solution. This result is surprising since the interaction with a ‘favourable’
current produces a reduction in both the wavenumber and the wave steepness. As a
result, a reduction in the near-surface oscillatory velocities might be expected. Figure
8(b) suggests that this effect is more than offset by the development of additional
wave components associated with the vorticity distribution.
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Figure 13. Surface elevations, η(t), for waves (T = 1.05 s) on current case 7. (a) H = 0.10 m;
(b) H = 0.15 m; (c) H = 0.20 m. − − −, Waves-only solution, U = 0; ———, multi-layered
numerical model, U = U(z).

This result is important in two respects. First, it casts doubt on previous work
(notably Hedges & Lee 1992) which has attempted to model waves on depth-varying
currents in terms of an ‘equivalent’ uniform current, chosen such that the wavenumber
is correctly modelled. Even if such a current could be identified, the present results
suggests that the increase in the near-surface velocities could not be modelled by a
simple change in the dispersion relation, the upper and lower bounds of which are
given by the waves-only and Doppler-shifted solutions, respectively. Secondly, if the
oscillatory velocities beneath the wave crest increase, despite a reduction in the overall
wave steepness, it implies an associated change in the water-surface elevation. Tsao
(1959) provides the first evidence of such a change at O(ε2) for waves on currents
with uniform vorticity, whilst the numerical calculations provided by Teles da Silva
& Peregrine (1988) show that the shape of extreme waves is strongly affected by a
uniform vorticity distribution.

Within the present laboratory study attempts were made to investigate changes in
the surface elevation due to the vorticity distribution. For the wave cases indicated in
table 1 such changes lie within the measurement error described in § 2 and could not
therefore be rigorously identified. Attempts were also made to generate much steeper
waves, but the comments of Thomas & Klopman (1997) concerning the stability of
such waves proved highly relevant.

To overcome this difficulty the numerical model outlined in the Appendix was used
to investigate the interaction of three wave trains with the current profile indicated
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on figure 8(a). The results of these calculations are presented on figures 13(a)–13(c)
and concern waves having a period of T = 1.05 s and wave heights of H = 0.10,
0.15 and 0.20 m. In each case the water-surface elevation, η(t), predicted for the
combined wave–current flow is compared with a nonlinear regular wave solution
describing the waves acting alone, assuming both the wave height and the wave
period remain unchanged. Due to the steepness of the waves involved, particularly in
figure 13(c) an 18th-order stream function solution was applied. In figure 13(a) the
wave conditions (H = 0.1 m, T = 1.05 s), which correspond exactly to test case 7 on
figure 8, are such that the wave steepness calculated on the current is 1

2
Hk = 0.14,

while the corresponding value for the waves-only solution is 1
2
Hk = 0.18. In this case

the differences between the surface profiles are small, and appear to be consistent
with the findings of Swan & James (2000). Furthermore, given the accuracy of the
experimental measurements (η:±1 mm), it is clearly not possible to reliably identify
changes of this magnitude. In figures 13(b) and 13(c) the wave height is increased,
giving respective steepness values of 1

2
Hk = 0.21 and 0.27 for combined waves and

currents and 1
2
Hk = 0.26 and 0.33 for a waves-only solution. In the latter case (figure

13c) the change in the water-surface elevation, η(t), is considerable: the crest is higher
and narrower and the trough broader and less deep. In essence, the interaction with a
strongly sheared current produces a surface profile that has reduced overall steepness,
measured in terms of 1

2
Hk, but increased crest–trough asymmetry.

The data presented on figure 13(c) appear consistent with the irrotational calcu-
lations for waves on a current of constant vorticity presented by Teles da Silva &
Peregrine (1988). In particular, the present results should be compared to the ex-
treme water-surface elevations shown on their figure 3, p. 289. However, the extent
to which the non-uniformity of the vorticity distribution influences the magnitude
of the surface elevation change, or the wave steepness at which it first becomes
apparent, requires further investigation. Nevertheless, the present data confirm that
the interaction between a highly nonlinear wave and a strongly sheared current with
non-uniform vorticity produces two practically important effects. First, the maximum
crest elevation for a given wave height is significantly increased (in the present case
by 12%). Secondly, the asymmetry of the wave is such that the maximum local
surface gradient (∂η/∂t) is both increased, and arises at much higher elevations above
the mean water level. These latter points have particular relevance to the calcula-
tion of the maximum water-particle acceleration and are therefore important for the
determination of inertia loading.

3.3.3. Near-bed pressure fluctuations

The importance of the wave–current interaction is further considered in figure 14.
These results concern the wave-induced pressure fluctuations recorded on the bed
of the wave flume, and in both cases relate to a regular wave train (H = 0.101 m,
T = 1.2 s and d = 0.7 m) propagating on a ‘favourable’ current. In the first example,
figure 14(a), the current profile was uniform with depth (current case 3 on figure
5a), while in the second, figure 14(b), the current was positively sheared (current
case 5 on figure 6a). In the first example the data are compared to a fifth-order
Stokes solution (Sobey et al. 1987) which neglects the current, and a Doppler-shifted
solution (Fenton 1985). The latter solution is shown to be in good agreement with
the measured data and highlights the importance of incorporating the current profile.
These results confirm the strong Doppler-shift effects originally noted by Draper
(1957) and discussed further by Peregrine (1976).
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Figure 14. Wave-induced pressure fluctuations measured at the bed, pw . (a) Waves on a uniform
current, current case 3; (b) waves on a ‘favourable’ shear current, current case 5. ———, Experimen-
tal data; − − −, waves-only solution, U = 0; - - - - - - -, Doppler-shifted solution, U = Us; ———,
multi-layered numerical model, U = U(z).

The second example (figure 14b) highlights the importance of the vorticity dis-
tribution. In this case the measured data are compared to the Stokes solution, the
Doppler-shifted solution, and the results of the numerical model. In this, and several
other cases involving both ‘favourable’ and ‘adverse’ sheared currents, the numerical
model provides a good description of the near-bed pressure fluctuations. Indeed, these
results are consistent with the previous velocity data in that the effects of the vorticity
distribution are clearly significant, and act to reduce the effect of the Doppler shift.
These results are of important practical significance since the pressure fluctuations
measured at or near the seabed are frequently used to determine the wave conditions
(for both regular and random waves) in shallow coastal waters. The present data
suggest that the neglect of either the current (figure 14a) or the near-surface vorticity
(figure 14b) may result in large errors in the predicted wave heights. For example,
figure 14(b) suggests that errors of the order of 30% could easily arise in the predicted
crest elevation if the current is strongly sheared.

4. ‘Gradually varying’ flow
4.1. Problem definition

It has already been noted that the initial interaction of waves and currents can result
in a significant change in the current profile, ∆U(z), and that these changes must be
taken into account when predicting the equilibrium conditions. In a similar manner,
the wave heights used in the previous calculations were measured in the presence of the
current, and have not so far been related to the wave heights generated in still water,
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prior to the wave–current interaction. Indeed, the initial changes in the wavelength,
the wave height and the current profile may be viewed as part of a ‘gradually
varying’ flow, in which (strictly speaking) these changes take place over a scale of
several wavelengths. Unfortunately, this rate of change is difficult to achieve within a
laboratory wave flume where, more typically, these changes occur over a scale of one
wavelength. Nevertheless, Thomas (1981, 1990) has shown that in the absence of an
alternative formulation, a ‘gradually varying’ theory provides a reasonable description
of nonlinear waves on a weakly sheared current. To achieve this comparison Thomas
(1990) proposed a fifth-order solution based upon the conservation of wave action
(Bretherton & Garrett 1968). This solution is valid for nonlinear waves on a uniform
or irrotational current. However, in his figure 8 (p. 531) Thomas (1990) compares this
solution with nonlinear waves on weakly sheared currents, and obtains a reasonable
description of the changes in both the wavelength and the wave height. Furthermore,
he concludes that the discrepancies arising within this comparison may, in part, be
due to the neglect of vorticity.

To help clarify this point the present measurements are compared to both this
nonlinear solution and a second-order solution for waves on a linear shear current
or constant vorticity (Jonsson et al. 1978). This latter case has been considered more
recently by Brevik & Sollie (1993, 1997) in which they calculate the fluxes of mass, mo-
mentum and energy and provide an expression for the wave energy. However, neither
the O(ε2) solution for constant vorticity or the O(ε5) solution for waves on a uniform
current (Thomas 1990) is directly applicable to the present measurements since the
waves are nonlinear, and the vorticity varies strongly with depth. In an attempt to
bridge this gap the authors have applied a simplistic approach based upon the total
rate of energy transfer across a fixed vertical section. This approach was first applied
by Longuet-Higgins & Stewart (1960) in their derivation of the radiation stress tensor.
Although this analysis was originally applied to irrotational flow, Longuet-Higgins &
Stewart (1960) indicate in a footnote (p. 574) that vorticity may be taken into account
by supposing U to be dependent upon z. In the present calculations exactly this
approach has been adopted, and the numerical model outlined in the Appendix used
to determine the total rate of energy transfer both before and after the interaction
with the measured current. If Rx defines the mean rate of energy transfer across a
vertical plane (x = constant), Longuet-Higgins & Stewart (1960) give

Rx =

∫ d+η

0

(
p+ 1

2
ρu2 + ρgz

)
ux dz (3)

where η(t) defines the water surface, p is the pressure, ρ is the density, u is the
velocity vector (ux, uz) which includes both the wave and the current components, (i.e.
ux = U + u), and the overbar denotes the mean value with respect to time which is
taken after performing the integration.

If (3) is applied prior to the interaction of the wave and the current, the mean
rate of energy transfer is given by the linear sum of (a) that due to the waves, and
(b) that due to the current (each acting in the absence of the other). In this case the
former quantity is dependent upon the initial wave height, H0, and may be determined
from a nonlinear Stokes solution, while the latter quantity is dependent upon the
undisturbed current profile, U(z), measured in the absence of waves. Equating this
sum to the mean rate of energy transfer arising in the combined wave–current flow,
calculated using the numerical model outlined in the Appendix, yields an additional
constraint. Provided the current profile in the presence of the wave is measured,
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or can be predicted (Groeneweg & Klopman 1998), this approach allows the wave
height change, ∆H , to be determined. In the present study the current profile was
measured both in the presence and absence of waves. As a result, the problem remains
determinant, albeit in an iterative sense.

4.2. Changes in the wavelength

Within the experimental study the wavelength was determined by cross-correlating
the surface elevation data recorded from two wave gauges located 200 mm apart.
This allows the time-lag between the signals to be determined and hence the phase
velocity, c, of the waves. Since the wave period remains constant, the wavelength
is readily determined from λ = cT . Using this approach it was estimated that
the wavelength could be determined with an accuracy of ±10 mm or ±1%. The
wavelengths associated with cases 5–8, involving the interaction with a ‘favourable’
current, are presented on figure 15(a); while cases 13–15, involving the interaction
with an ‘adverse’ current, are presented in figure 15(b). These cases are also considered
in tables 2(a) and 2(b) where additional calculations, based on an O(ε) solution for
waves on a depth-uniform current and an O(ε2) solution for waves on a constant-
vorticity current (Jonsson et al. 1978) are presented. In the latter solution the linear
shear (or uniform vorticity) is based on the value determined at the water surface, ωs.
This approach is consistent with the so-called ‘depth of influence’ proposed by Teles
da Silva & Peregrine (1988). In this analysis the linear dispersion equation for waves
on a constant-vorticity current was used to define a depth of water (equation 2.11 on
p. 284) which characterizes the depth of current that influences the wave properties.
Similar arguments are also applied by White (1999) in his interpretation of a new
current-induced phase shift (see his § 8 p. 340). In the present laboratory cases the
‘depth of influence’ varies from 0.11 m (case 5) to 0.17 m (case 8). Within these layers
the vorticity is relatively constant, and equal to the value at the water surface, ωs.
Tables 2(a) and 2(b) also provide comparisons with the O(εδ) solution (Swan & James
2000) given in (2).

Figures 15(a) and 15(b) clearly demonstrate that the measured data are in good
agreement with the results of the numerical model and differ significantly from both
the O(ε5) waves-only solution and the O(ε5) Doppler-shifted solution. In addition table
2(a) confirms that in the ‘favourable’ current cases it is more important to model the
vertical structure of the current profile rather than the additional nonlinear terms
relating to a uniform-current approximation. This is, however, to be expected given
that wave cases 5–8 are not exceptionally steep. Nevertheless, the agreement with the
O(εδ) solution (Swan & James 2000) given in (2) is surprisingly good. Furthermore,
the linearly sheared model (Jonsson et al. 1978) based on the vorticity at the water
surface, ωs, is also reasonably effective.

In the ‘adverse’ current examples (cases 13–15) the value of the surface vorticity is
less than that observed in cases 5–8, and the waves are steepened as they propagate
onto the ‘adverse’ current. Consequently, the data provided in table 2(b) suggest that
the nonlinearity associated with the irrotational components of the flow is dominant.
Nevertheless, the affect of the vorticity distribution remains important. Evidence of
this is given in the final three columns of table 2(b). Comparisons between the changes
due to the nonlinearity associated with a uniform current and those associated with
a second-order model for waves on a current with uniform vorticity, confirm that
although the former quantity is generally larger, the latter is by no means insignificant.
With increasing wave steepness, table 2(b) also highlights the expected limitations of
the O(εδ) solution given in (2) relative to the full numerical model.
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Wave length on current, λ (m)

U = U(z)

Initial Initial
wave- wave O(εδ) 2U = Us

3U = Us − ωsz′
Run length steepness Numerical solution1

number λ0 (m) 1
2
H0k Measured model (Eq. (2)) O(ε) O(ε5) O(ε2)

(a) 5 0.941 0.28 1.358 1.318 1.285 1.612 1.508 1.164
6 1.313 0.21 1.765 1.736 1.709 2.127 2.026 1.603
7 1.756 0.18 2.138 2.188 2.124 2.662 2.627 1.990
8 2.218 0.15 2.508 2.645 2.559 3.200 3.193 2.420

(b) 13 1.316 0.18 0.820 0.844 0.678 0.587 0.771 0.740
14 1.603 0.15 1.064 1.097 0.962 0.841 0.989 0.990
15 1.902 0.12 1.341 1.373 1.292 1.116 1.202 1.436

Table 2. Measured and predicted wave lengths: (a) waves on a favourable sheared current, cases 5–8; (b) waves on an adverse sheared current, cases
13–15. (Calculations based on 1Swan & James (2000), 2Thomas (1990) and 3Jonsson et al. (1978), with z′ = z − d.)

Wave height on current, H(m)

1U = U(z)
2U = Us

3U = Us − ωsz′
Initial Initial
wave wave Non-

Run height steepness Numerical O(εδ) Linear linear
number H0 (m) 1

2
H0k Measured model solution O(ε) O(ε5) O(ε2)

(a) 5 0.083 0.28 0.079 0.077 0.075 0.046 0.051 0.056
6 0.088 0.21 0.083 0.081 0.078 0.051 0.055 0.061
7 0.102 0.18 0.100 0.091 0.087 0.062 0.065 0.075
8 0.107 0.15 0.106 0.096 0.090 0.068 0.071 0.083

(b) 13 0.075 0.18 0.086 0.094 0.106 0.184 0.107 0.150
14 0.075 0.15 0.094 0.098 0.107 0.152 0.111 0.135
15 0.075 0.12 0.096 0.098 0.106 0.137 0.113 0.113

Table 3. Measured and predicted wave heights: (a) waves on a favourable sheared current, cases 5–8; (b) waves on an adverse sheared current, cases
13–15. (Calculations based on 1the total rate of energy transfer [Eq. (3)] and 2,3the conservation of wave action using 2Thomas (1990) and 3Jonsson
et al. (1978) with z′ = z − d.)
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Figure 15. Wavelength changes. (a) Waves on a ‘favourable’ shear current, cases 5–8; (b) waves
on an ‘adverse’ shear current, case 13–15. �, Experimental data; - - - - - - -, O(ε5) Doppler-shifted
solution, U = Us, Thomas (1990); −−−, O(ε5) waves-only solution, U = 0; ———, multi-layered
numerical model, U = U(z).

4.3. Changes in wave height

Figures 16(a) and 16(b) again concern wave cases 5–8 and 13–15, and contrast the
height of the waves after their interaction with the various currents (H) with those
recorded in the absence of the current (H0). The measured data are compared with
four solutions, three of which are based on the conservation of wave action. The
first of the three represents a linear approximation based upon a uniform current
(U = Us) following the work of Bretherton & Garrett (1968); the second represents
the fifth-order extension of this model proposed by Thomas (1990); while the third
represents a second-order model appropriate to a linearly sheared current (or constant
vorticity) proposed by Jonsson et al. (1978). Both figures 16(a) and 16(b) show that
none of these solutions provides a good description of the experimental data. In
contrast, the fourth solution is based upon the energy flux equation (3), with the
combined wave–current motion determined using the numerical model outlined in
the Appendix. This provides the only method that includes both the nonlinearity of
the flow and the vertical structure of the current profile, and is shown to be in good
agreement with the measured data.

Tables 3(a) and 3(b) again concern wave cases 5–8 and 13–15 and provide additional
comparisons with the O(εδ) solution proposed by Swan & James (2000). In this
case the total energy flux constraint (3) has been applied, but the combined wave–
current flow calculated using the O(εδ) solution. In the ‘favourable’ current examples
(cases 5–8) it is interesting to note that although the nonlinearity associated with the
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Figure 16. Wave height changes. (a) Waves on a ‘favourable’ shear current, cases 5–8; (b) waves
on an ‘adverse’ shear current, cases 13–15. �, Experimental data; ———, O(ε) Doppler-shifted
solution, U = Us; - - - - - - -, O(ε5) Doppler-shifted solution, U = Us, Thomas (1990); − − −, O(ε2)
constant vorticity solution, U = Us−Ω(z−d), Jonsson et al. (1978); ———, multi-layered numerical
model, U = U(z).

irrotational flow components (i.e. a uniform-current approximation) is not particularly
significant, the second-order solution based upon a linearly sheared current (constant
vorticity) is in poor agreement with the measured data. In contrast, the O(εδ) solution
provides results that are almost identical to the nonlinear numerical model. These
comparisons clearly highlight the importance of the vertical structure of the current.
However, in table 3(b) the increased nonlinearity of waves on ‘adverse’ currents (cases
13–15) again reveals the limitations of the O(εδ) solution.

5. Conclusions
The present paper has addressed the case of two-dimensional waves propagating

on a vertically sheared current, in which the vorticity distribution is non-uniform. A
new experimental investigation has been presented where measurements of the water-
surface elevation, the water-particle kinematics, and the pressure fluctuations have
been compared to a number of wave–current models. With regard to the equilibrium
conditions, describing the combined wave–current motion, the existing irrotational
solutions (based on a uniform-current approximation) provide a poor description
of the measured data. In contrast, comparisons with a nonlinear numerical model,
capable of including the vertical structure of the current profile, are good provided
the interaction is based upon the current profile measured in the presence of the
waves. However, the purpose of this paper is not to promote one particular model,
but rather to provide the first quantitative laboratory measurements of waves on
strongly sheared currents, such that the importance of the vorticity distribution can
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be clearly established. In particular, it has been shown that even if the vorticity is
restricted to the upper fluid layers, as would undoubtedly be the case in a wind-driven
current, the inclusion of vorticity-related terms within the dispersion equation leads to
a modification of the flow over the entire water depth. However, although these terms
are important, it is not sufficient merely to provide an updated dispersion equation
reflecting the current profile at the water surface. Indeed, in the case of a positively
sheared ‘favourable’ current the present study suggests that the oscillatory water-
particle velocities arising beneath a wave crest will be substantially larger than those
predicted by an irrotational solution which either neglects the current or assumes
that it is uniform with depth. In steep waves it is shown that the increased velocities
are associated with changes in the surface profile, η(t), with increased crest–trough
asymmetry despite a reduction in the overall wave steepness, ( 1

2
Hk). These changes

are consistent with earlier studies of waves on currents with uniform vorticity (Tsao
1959) and are closely related to the extreme wave profiles presented by Teles da Silva
& Peregrine (1988).

These results are significant from a practical perspective. First, they imply that
the vorticity distribution may produce increased maximum water-surface elevations
for a given wave height, through increased crest–trough asymmetry. This is clearly
relevant to the specification of an effective air gap necessary to prevent wave impacts
on the underside of an offshore structure. Secondly, and perhaps more importantly,
the data also suggest that the vorticity distribution may lead to increases in the
maximum gradient of the water-surface profile, ∂η/∂t. This implies larger maximum
water-particle accelerations occurring at higher elevations. This result is relevant to
the calculation of a wide range of inertial loads in combined waves and currents.

The paper has also considered the ‘gradually varying’ problem that arises when
a wave train first propagates onto a current, with consequent changes in the wave-
length, the wave height, and the current profile. The usual assumption consistent with
this approach is that these changes (∆λ,∆H and ∆U) take place over several wave-
lengths. However, in the present study (or, indeed, any other laboratory study) this
condition is seldom upheld, with changes typically taking place over one wavelength.
Despite this difficulty, Thomas (1990) obtained good agreement in a number of cases
involving weakly sheared currents, but concluded that: ‘It cannot be deduced that
the irrotational theory will provide a similar degree of accuracy for wave amplitude
and wave length variations when the current profiles possess a greater distribution of
vorticity.’ The present measurements allow the resolution of this issue, and confirm
that neither the nonlinear irrotational solution proposed by Thomas (1990) nor the
second-order uniform-vorticity solution proposed by Jonsson et al. (1978), provides a
plausible description of the present data.

In the absence of a generalized conservation of wave action equation appropriate
to the nonlinear interaction of waves on a general rotational current, the present
study has applied the conservation of total energy flux similar to that proposed by
Longuet-Higgins & Stewart (1960). Provided the current change, which is shown
to be dependent on both the wave steepness and the vorticity distribution, can be
determined a priori (in the present cases measured), the numerical model provides a
good description of the changes in the wavelength, while the inclusion of the energy
flux constraint allows the changes in the wave height to be accurately predicted.
Similar calculations based upon the O(εδ) model proposed by Swan & James (2000)
were also shown to be effective. Unfortunately, that model is only valid in the ‘weak’
current regime (δ = O(ε)� 1), but with no restrictions placed on the strength of the
vorticity distribution. However, there appears no obvious reason why the ‘moderate’
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current solutions proposed by Kirby & Chen (1989) and Thomas & Klopman (1997)
should not be used in a similar manner with equal success. Indeed, the present results
confirm that it is the vertical structure of the current, rather than its relative strength,
that is important. Finally, it is perhaps of practical relevance to note that although
the present energy flux approach requires information concerning the wave-induced
current change, ∆U, which is not typically available, the combination of this approach
with recent developments reported by Groeneweg & Klopman (1998) may lead to a
useful predictive tool.

This work was undertaken as part of the MAST project ‘Kinematics and Dynamics
of Wave-Current Interactions.’ It was funded by the Commission of the European
Union Directorate General for Science, Research and Development under contract
no. MAS3-CT95-0011.

Appendix. A multi-layered numerical model
The five-layered numerical model outlined in this section provides a two-dimensional

representation of the equilibrium conditions arising from the interaction of waves with
a depth-varying current. The proposed model is based upon the bi-linear solution
originally outlined by Dalrymple (1974). In the present study the number of layers has
simply been increased to provide an adequate representation of a strongly sheared
current with a non-uniform vorticity distribution. If the wave motion is defined
by a regular wave train propagating without change of form in a homogeneous,
incompressible and inviscid fluid of constant depth, and the current is assumed to be
both steady and aligned in the plane of the wave motion, a stream function, ψ, may
be defined such that in a steady frame of reference:

(U + u− c) = −∂ψ
∂z
, v =

∂ψ

∂x
, (A 1)

where (u, v) are the wave-induced velocity components in the (x, z)-directions, U is
the steady current, and c is the phase velocity. A sketch showing both the coordinate
arrangement and the solution domain is given in figure 17.

In this frame of reference the equations of motion may be simplified to give a
Poisson equation:

∇2ψ = Ω(ψ), (A 2)

where Ω(ψ) defines the vorticity distribution. If the current profile is approximated by
five linear segments (figure 17), the vorticity distribution is constant in each fluid layer,
and the stream function, ψi, in the ith fluid layer (i = 1, 2, 3, 4, 5) will be of the form

ψi=(c−Ui−1)z− (Ui −Ui−1)

(di−1 − di)
(
z2

2
+ di−1z

)
+

N∑
n=1

[Xi(n) sinh nkz+Yi(n) cosh nkz] cos nkx,

(A 3)

where k is the wavenumber, N is the order of the approximation which corresponds to
the number of harmonics within the truncated series solution, and (Ui, di) defines the
current profile (figure 17) such that U0 = UB , the current velocity just above the bed,
and U5 = Us, the current velocity at the water surface. In this form the velocity poten-
tial in each fluid layer provides an exact solution to the governing field equation (A 2).

If, in a typical wave–current interaction, the current profile (Ui, di) is specified
together with the wave height, H , and the wave period, T , of the co-existing wave
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Figure 17. Coordinate arrangement and solution domain. (Note: Within this solution z is
measured from the still water level upwards.)

train, the first two terms in (A 3) define the current profile, while the third defines
the resulting wave motion. In addition to the (Xi, Yi) unknowns, the required solution
must solve for the wavenumber, k, the water-surface elevation, η, and the interfacial
displacements, ξi, where i = 1, 2, 3, 4 (figure 17). This gives a total of (2Nm + m + 1)
unknowns, where m is the number of fluid layers, which is five in the present study.
These unknowns are determined iteratively by minimizing the error in the following
boundary conditions and equilibrium constraints.

A.1. External boundaries

If the bottom boundary is assumed to be both horizontal and impermeable, the
vertical velocity must reduce to zero:

∂ψ

∂x
= 0 on z = −d. (A 4)

Assuming that z = η(x) defines the water-surface elevation, the kinematic free-surface
boundary condition ensures that the water surface is a streamline:

ψ5(x, z) = ψη = constant on z = η(x). (A 5)

On z = η(x), the dynamic free-surface boundary condition stipulates that the pressure
is constant. Applying Bernoulli’s equation yields

η(x) +
1

2g

[(
∂ψ5

∂x

)2

+

(
∂ψ5

∂z

)2
]

= constant on z = η(x), (A 6)

where g is the acceleration due to gravity.
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A.2. Interfacial boundary conditions

Within the proposed solution the interfacial boundaries must represent streamlines:

ψ(di + ξi) = ψξi = constant (for i = 1, 2, 3, 4). (A 7)

Furthermore, the tangential velocities must be continuous across the boundaries:

∂ψi+1

∂n
=
∂ψi

∂n
on z = di + ξi(x) where i = 1, 2, 3, 4, (A 8)

where n defines a normal to the streamline.

A.3. Equilibrium constraints

Since the present model is concerned with the equilibrium state associated with the
combination of waves and currents, three further constraints may be imposed. First,
the difference between the water-surface elevations arising at the wave crest and the
wave trough must be equal to the specified wave height, H:

η(x = 0)− η (x = 1
2
λ
)

= H. (A 9)

Secondly, there should be no mean change in the water depth:∫ x=λ/2

x=0

η(x) dx = 0, (A 10)

and thirdly, there should be no mean displacement of the interfacial layers:∫ x=λ/2

x=0

ξi(x) dx = 0 (for i = 1, 2, 3, 4). (A 11)

The boundary conditions (A 4)–(A 8) and equilibrium constraints (A 9)–(A 11) are
sufficient to define the (2Nm + m + 1) unknowns. The bottom boundary condition
(A 4) may be satisfied exactly by setting

Yi(n) = Xi(n) tanh nkd, (A 12)

where d is the total water depth; whilst (A 5) and (A 8) together with (A 3) allow η(x)
and ξi(x) to be determined iteratively for given values of ψη and ψξi , respectively.
In the present study these calculations were undertaken using a simple Newton–
Raphson formulation. The solution procedure is thus reduced to the determination
of (2Nm−N + m+ 1) unknowns, and develops accordingly:

(i) An initial estimate is made for λi, Xi(1), Yi(1), ψη and ψξi using a linear theory
for waves on a uniform current (U = Us).

(ii) Equations (A 3), (A 5) and (A 7) are used to define η(x) and ξi(x) where
i = 1, 2, 3, 4.

(iii) Assuming all the remaining unknowns are set to zero, an objective function
is defined which expresses the sum of the mean square errors in (A 6), (A 8), (A 9),
(A 10), and (A 11).

(iv) If this objective function is minimized with respect to the unknowns (and a
number of Lagrange multipliers), sufficient equations are produced to define a new
estimate for both the unknowns and the Lagrange multipliers.

(v) The new estimates for ψη and ψξi are used to re-calculate the η(x) and ξi(x)
(as (ii) above), and the iterative procedure continued until a converged solution is
achieved.

Although this procedure is simplistic, the present calculations suggest that the
computational demands are small, and that the procedure is robust in the sense
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that a converged solution was achieved for all realistic (non-breaking) wave–current
combinations. Using this approach typical calculations, involving a steep wave on a
strongly sheared current, require the inclusion of eight harmonics and were undertaken
on a standard PC with a 200 MHz Pentium processor. In the most nonlinear case,
convergence was achieved after 100 iterations involving approximately five minutes
of CPU time.
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